

Hybrid Inverter

UHC-4/5/6/8/10/12KT-U2 UHC-15/20KT-U2

User Manual

Upower Electric Co.,Ltd

Contents

1 About This Manual	3
1.1 How to Use This Manual	3
1.2 Target Groups	3
1.3 Symbols	4
2 Safety Instructions	5
2.1 Safety Notes	5
2.2 Statement	5
3 Product Description	7
3.1 System Introduction	7
3.2 Product Introduction	8
3.2.1 Models	8
3.2.2 Appearance	8
3.2.3 Indicator	9
3.3 Symbols on the Inverter	10
3.4 Operation Modes	10
3.5 Back-Up and Off-Grid Output	13
3.6 Unpacking and Storage	14
3.6.1 Packing List	14
3.6.2 Inverter Storage	15
4 Installation	16
4.1 Location	16
4.1.1 Installation location	16
4.1.2 Installation Spacing	17
4.1.3 Installation Angle	17
4.2 Mounting the Inverter	18
4.2.1 Wall Bracket Installation	18
4.2.2 Mounting the Inverter	19
4.2.3 External Ground Connection	20
5 Electrical Connection	21
5.1 Electrical Wiring Diagram	22
5.2 AC Connection	25
5.2.1 AC Side Requirements	25
5.2.2 Assembling the AC Connector	27
5.2.3 Installing the AC Connector	
5.3 Monitoring Device Installation	29
5.4 Meter and CT Connection	
5.5 Communication Connection	31
5.5.1 Assembling the Multi-com Connector	32
5.5.2 Connect the Meter and BMS Communication Cables	32
5.5.3 Meter and BMS Communication	33

5.5.4 EMS Communication	34
5.5.5 DRMs	34
5.5.6 RCR&Fast Stop	35
5.5.7 Multifunction Relay	37
5.5.8 Parallel System	39
5.6 PV String Connection	41
5.6.1 PV Side Requirements	41
5.6.2 Assembling the PV Connector	42
5.6.3 Installing the PV Connector	43
5.7 Power Cable of the Battery Connection	45
5.7.1 The following principles must be considered when making battery connection:	45
5.7.2 Lithium battery connector assembly procedures	45
6 Commissioning	48
6.1 App Preparation	48
6.2 Inspection Before Commissioning	48
6.3 Commissioning Procedure	49
6.4 Stop the Inverter	50
7 Operation	51
7.1 Local Interface Introduction	51
7.2 Home Page	51
7.3 Detail Info Page	52
7.3.1 PV Info Page	52
7.3.2 Grid Info Page	52
7.3.3 Load Info Page	53
7.3.4 Battery Info Page	53
7.3.5 Inverter Info Page	54
7.4 Fault Page	54
7.5 Statistics Page	55
7.6 Setting Page	56
7.6.1 Brightness Setting Page	56
7.6.2 Inverter Setting Page	57
7.6.3 Version Page	60
7.6.4 Clear Page	61
7.7 Start up the System	62
7.8 Shut Down the System	62
8 Troubleshooting	63
8.1 Error Message	63
8.2 Inverter Maintenance	68
8.3 Battery Maintenance	69
9 Appendix	70
9.1 Technical Parameters	70
9.2 Contact Information	72

1. About This Manual

This manual is an integral part of UHC-4~20KT-U2 series three-phase high-voltage hybrid inverters (hereinafter referred to as the inverter). It mainly introduces the assembly, installation, electrical connection, debugging, maintenance and troubleshooting of the products.

The products, services or features purchased are subject to the commercial contracts and terms of Upower Electric Co., Ltd. All or part of the products, services or features described in this document may not be within the scope of purchase. This document serves only as a guide to use, and all statements, information and recommendations in this document do not constitute any express or implied guarantee.

1.1 How to Use This Manual

Before installing and using inverters, please read this manual carefully, understand the safety information and be familiar with the functions and characteristics of inverters.

The manual content of subsequent versions of the inverter may be subject to change. The latest manual can be found at www. ucanpower.com.

1.2 Target Groups

This manual is applicable to electrical installers with professional qualifications and end-users, who should have the following skills:

① Training for installation and commissioning of the electrical system, as well as dealing with hazards.

- ② Knowledge of the manual and other related documents.
- ③ Knowledge of the local regulations and directives.

1.3 Symbols

Important instructions contained in this manual should be followed during installation, operation and maintenance of the inverter. They will be highlighted by the following symbols.

Indicates additional information, emphasized contents or tips that may be helpful, e.g., to help you solve problems or save time.

2 Safety Instructions

2.1 Safety Notes

① Before installation, please read this manual carefully and follow the instructions in this manual strictly.

② Installers need to undergo professional training or obtain electrical related professional qualification certificates.

③ When installing, do not open the front cover of the inverter. Apart from performing work at the wiring terminal (as instructed in this manual), touching or changing components without authorization may cause injury to people, damage to inverters and annulment of the warranty.

④ All electrical installations must conform to local electrical safety standards.
 ⑤ If the inverter needs maintenance, please contact the local designated personnel for system installation and maintenance.

(6) To use this inverter for power generation needs the permission of the local power supply authority.

 The temperature of some parts of the inverter may exceed 60°C during operation. To avoid being burnt do not touch the inverter during operation.
 Let it cool before touching it.

⑧ When exposed to sunlight, the PV array generates dangerous high DC voltage. Please operate according to our instructions, or it will result in danger to life.

③ When wiring the lithium battery terminals, please disconnect the breaker or switch of the lithium battery in case of a physical injury caused by the high voltage.

2.2 Statement

Upower Electric Co., Ltd has the right not to undertake quality assurance in any of the following circumstances:

① Damages caused by improper transportation.

② Damages caused by incorrect storage, installation or use.

③ Damages caused by installation and use of equipment by non- professionals or untrained personnel. ④ Damages caused by failure to comply with the instructions and safety warnings in this document.

⑤ Damages of running in an environment that does not meet the requirements stated in this document.

⁽⁶⁾ Damages caused by operation beyond the parameters specified in applicable technical specifications.

⑦ Damages caused by unauthorized disassembly, alteration of products or modification of software codes.

⑧ Damages caused by abnormal natural environment (force majeure, such as lightning, earthquake, fire, storm, etc.).

^(III) Products beyond the warranty period.

3. Product Description

3.1 System Introduction

NOTICE

The hybrid solar system is usually composed of the PV array, hybrid inverter, lithium battery, loads and power grid.

The system is not suitable for supplying life-sustaining medical devices. It cannot guarantee backup power in all circumstances.

The applicable grid types for the UHC-4~20KT-U2 series are TN-S, TN-C, TN-C-S and TT. When applied to the TT grid, the voltage of N to PE suggests less than 30V.

Figure 3-2 Applicable grid types

3.2 Product Introduction

The UHC-4~20KT-U2 series inverter is also known as hybrid inverter or storage inverter, which is mainly used to combine the PV array, lithium battery, loads and power grid to realize intelligent power management and dispatching.

3.2.1 Models

The UHC-4~20KT-U2 series hybrid inverter includes 8 models which are listed below:

UHC-4KT-U2, UHC-5KT-U2, UHC-6KT-U2, UHC-8KT-U2, UHC-10KT-U2, UHC-12KT-U2, UHC-15KT-U2, UHC-20KT-U2.

3.2.2 Appearance

Figure 3-3 Inverter Appearance

ltem	Terminal	Note
1	Display and LED panel	Display the operation information and working states of the inverter.
2	Hanger	Used to hang the inverter on the wall-mounting bracket.
3	DC switch	Used to safely disconnect the DC circuit.
4	DC input terminal	PV connector
5	Battery input terminal	Battery connector
6	COM1 port	WiFi/LAN/4G module connector
7	COM2 port	Multifunction Connector (Meter/BMS/RS485/DRMs)
8	On-grid output terminal	Used for On-grid output cable connection
9	Bac k up output terminal	Used for Back-up output cable connection
10	Grounding screw	for grounding

Wiring terminals are at the bottom of the inverter, as shown in the table below.

3.2.3 Indicator

Figure 3-4 Inverter display interface

Item	Indicator	Status		Description	
		Off		No power	
			Quick flashing	Inverter entered self-test status.	
		Green	Slow flashing	Inverter entered waiting status.	
Power and	Power and		Breathe flashing	Inverter works normal.	
1	Alarm Indicator	Orange	Breathe flashing	Low battery warning, the battery power is	
				about to reach the SOC protection value.	
		Red Always on		An fault is detected, view the fault info on	
		Reu	Always off	the display.	
2	Display	Display dims to to save power, Click anywhere on the display to light it up.			

3.3 Symbols on the Inverter

Symbol	Description
	To avoid the potential effects on the environment and human health as a result of the presence of hazardous substances in electrical and electronic equipment, end-users of electrical and electronic equipment should understand the meaning of the crossed-out wheeled bin symbol. Do not dispose of WEEE as unsorted munic- ipal waste and have to collect such WEEE separately.
Ţ.	Please read the instructions carefully before installation.
10 min	Do not touch any internal parts of the inverter being disconnected from the mains, battery and PV input for 10 minutes.
CE	CE mark, the inverter complies with the requirements of the applicable CE guidelines.
	Danger. Risk of electric shock!
	The surface is hot during operation and do not touch.
	Additional grounding point.

3.4 Operation Modes

UHC Hybrid inverter has the following basic operation modes and you can configure the operation mode as per your preference in the App.

discharge.

Batten

Grid

Generators Mode

In this working mode if you need the inverter to control the generator ON/OFF, you can turn on the Gen Ctrl and set start working SOC and stop working SOC. When the battery discharge to start working SOC or generator mode is setted for the first time, the PV and generator charge the battery and load until the battery reaches stop working SOC and inverter will stop the generator.

If you set the generator max Power value, the lowest efficiency point and highest efficiency point, the inverter will make the generator work in a state of high efficiency.

3.5 Back-Up and Off-Grid Output

Normally, the Back-Up switching time is less than 20ms. However, some external factors may cause the system to fail on switching to Back-Up mode. Therefore, the conditions for using the Back-Up function smoothly are as follows for your awareness.

① Do not connect loads that are dependent on a stable energy supply for a reliable operation.

② Do not connect the loads whose total capacity is greater than the maximum Back-Up capacity.

③ Do not connect the loads that may cause very high start-up current surges, such as non-frequency conversion air conditioning, vacuum cleaner or half-wave loads such as hair dryer, heat gun, hammer drill.

④ Due to the condition of the battery itself, battery current might be limited by some factors, including but not limited to the temperature and weather.

UHC-4~20KT-U2 hybrid inverter overloading ability in off-grid work mode describes as follows:

Off-grid Overloading Ability Illustration					
Status	Mode	Phase 1	Phase 2	Phase 3	Duration
	Balance	1.1times	1.1times	1.1times	Continuous
Off grid	Output Mode	2times	2times	2times	60s
Oll-glid	Unbalance Output Mode	1.25times*	1.25times*	1.25times*	Continuous

The multiples above are calculated based on rated output power.

UHC-4~20KT-U2 instantaneous max output power is 22kW.

*Only one of the three phases can reach up to 1.25 times, and the other two phases should be less than 1.1 times.

The inverter will restart in case of overload protection. The time required for restarting will increase (5 min at most) if overload protection repeats. Try to reduce Back-Up load power within maximum limitation or remove the loads

3.6 Unpacking and Storage

The device is thoroughly tested and strictly inspected before delivery. Nonetheless, damage may still occur during shipping. For this reason, please conduct a thorough inspection after receiving the device.

Contact Upower Electric or the transport company in case of any damage or incompleteness, and provide photos to facilitate services.

3.6.1 Packing List

The package of the inverter includes the following accessories. Please check whether the accessories in the packing box are complete when receiving the goods.

Figure 3-5 Packing list

ltem	Name and Quantity	Note
Α	Inverter (1pcs)	/
В	Wall-mounting bracket (1pcs), Expansion plug set (4pcs), M4-16 screws(2pcs)	/
С	On-grid connector set (1pcs)	Red
D	Back-up connector set (1pcs)	Black
E	PV terminal (UHC-4~6KT-U2 2 pairs / UHC-8~20KT-U2 4 pairs)	Black
F	Battery terminal (UHC-4~6KT-U2 1 pairs / UHC-8~20KT-U2 2 pairs)	Blue
G	Meter with 3 CTs (1pcs)	/
Н	COM connector set (1pcs)	/
I	Monitoring device (1pcs)	/
J	10m meter communication cable (1pcs), 3m battery communication cable (UHC-4~6KT-U2 1pcs/UHC-8~20KT-U2 2pcs)	1
К	PE terminal(1pcs)	/
L	User guide	/

3.6.2 Inverter Storage

① Do not dispose of the original packing case. It is recommended to store the device in the original packing case when the device is decommissioned.
② The storage temperature and humidity should be in the range of -30°C and + 60°C, and less than 90%, respectively.

③ If a batch of inverters needs to be stored, the height of each pile should be no more than 6 levels.

4 Installation

4.1 Location

The UHC-4~20KT-U2 series inverters are designed with IP65 protection enclosure for indoor and outdoor installations. When selecting an inverter installation location, the following factors should be considered:

① The wall on which the inverters mounted must be able to withstand the weight of the inverter.

② The inverter needs to be installed in a well-ventilated environment.

③ Do not expose the inverter directly to strong sunlight to prevent excessive temperature operation. The inverter should be installed in a place with shelter to prevent direct exposure to sunlight and rain.

Install the inverter at eye level for easy inspection of screen data and further maintenance.

 $\$ The ambient temperature of the inverter installation location should be between -30°C and 60°C.

(6) The surface temperature of the inverter may reach up to 75°C. To avoid risk of burns, do not touch the inverter while it's operating and inverter must be installed out of reaching of children.

4.1.1 Installation location

Select an optimal mounting location for safe operation, long service life and expected performance.

① The inverter with protection rating IP65 can be installed both indoors and outdoors.

② Install the inverter at a place convenient for electrical connection, operation, and maintenance.

Figure 4-1 Recommended installation location

Do not put flammable and explosive articles around the inverter.

4.1.2 Installation Spacing

Reserve enough clearance around the inverter to ensure sufficient space for heat dissipation.

Figure 4-2 Recommended installation spacing

4.1.3 Installation Angle

Install the inverter vertically. Never install the inverter horizontally, or at forward/backward tilted, or upside down.

Figure 4-3 Permitted and prohibited mounting positions

4.2 Mounting the Inverter

4.2.1 Wall Bracket Installation

Dimensions of wall bracket (mm)

Figure 4-4 Dimensions of wall bracket

① Use the wall bracket as the template to mark the position of 4 holes on the wall.

Figure 4-5 Marking hole position using installation bracket

② Use an electrical driller with 8mm diameter bit to drill 4 holes in the wall with 40mm depth.

Before drilling, make sure to avoid any buried water tube and electric wires in the wall.

③ Insert the expansion tubes into the holes and tighten them, then fix the bracket onto the wall with expansion screws by using a cross screwdriver.

Figure 4-6 Fixing the wall bracket

4.2.2 Mounting the Inverter

Lift the inverter, hang the back rail on the fixed wall bracket carefully. The lower left and right side of the inverter should be locked by two M4-16 cross head screws.

Figure 4-7 Mounting the inverter

4.2.3 External Ground Connection

Connect the inverter and ground bar through PE wire to achieve the purpose of grounding protection. Please always remember wiring the PE wire before wiring other wires.

Ground terminal connection steps:

① The external grounding terminal is located in on the lower right side of the inverter.

⁽²⁾ Fix the grounding terminal to the PE wire with a proper tool and lock the grounding terminal to the grounding hole in the lower right side of the inverter.

Figure 4-8 Grounding terminal connection

5 Electrical Connection

A high voltage in the conductive part of the inverter may cause an electric shock. When installing the inverter, make sure that the AC and DC sides of the inverter are completely de-energized.

Do not connect the N-wire as a protective ground wire to the inverter casing. Otherwise, it may cause electric shock.

Do not ground the positive or negative pole of the PV string, otherwise it will cause serious damage to the inverter.

Static may cause damage to the electronic components of the inverter. Anti- static measures should be taken during installation and maintenance.

Do not use other brands or other types of terminals other than the terminals in the accessory package. Upower Electric has the right to refuse all damages caused by the mixed-use of terminals.

Moisture and dust can damage the inverter, ensure the cable gland is securely tightened during installation. The warranty claim will be invalidated if the inverter is damaged as a result of a poorly connected cable connector.

5.1 Electrical Wiring Diagram

This diagram shows UHC-4~20KT-U2 series hybrid inverter wiring structure and composition, concerning the real project, the installation and wiring have to be in line with the local standards.

Figure 5-1 Electrical wiring diagram

*Ucanpower Smart Meter consists of ADL400N and RMM. Define the cable connections for the meter based on the actual meter model and refer to Section 5.4. This cable diagram is for reference only.

Single inverter wiring diagram

This diagram is an example without special requirement on electrical wiring connection.

Neutral line of AC supply can be isolated or switched.

Figure 5-2 Standard wiring diagram

*Ucanpower Smart Meter consists of ADL400N and RMM. Define the cable connections for the meter based on the actual meter model and refer to Section 5.4. This cable diagram is for reference only.

This diagram is an example for Australia and New Zealand. Neutral line of AC supply must not be isolated or switched, and the neutral line of GRID side and BACK-UP side must be connected together according to the wiring rules AS/NZS_3000. Otherwise, BACK-UP function will not work.

Figure 5-3 Australia wiring diagram

*Ucanpower Smart Meter consists of ADL400N and RMM. Define the cable connections for the meter based on the actual meter model and refer to Section 5.4. This cable diagram is for reference only.

5.2 AC Connection

5.2.1 AC Side Requirements

The UHC-4~20KT-U2 series inverters are designed with IP65 protection enclosure for indoor and outdoor installations. When selecting an inverter installation location, the following factors should be considered:

① The wall on which the inverters mounted must be able to withstand the weight of the inverter.

② The inverter needs to be installed in a well-ventilated environment.

③ Do not expose the inverter directly to strong sunlight to prevent excessive temperature operation. The inverter should be installed in a place with shelter to prevent direct exposure to sunlight and rain.

④ Install the inverter at eye level for easy inspection of screen data and further maintenance.

(5) The ambient temperature of the inverter installation location should be between -30°C and 60°C.

⑥ The surface temperature of the inverter may reach up to 75℃. To avoid risk of burns, do not touch the inverter while it's operating and inverter must be installed out of reaching of children.

 An independent AC breaker is required in both on-grid and back-up output side, and any loads cannot be connected with inverter directly.
 Before making the connection of AC cable, please confirm all DC & AC power source are disconnected from the inverter.

③ The UHC-4~20KT-U2 series three-phase high voltage hybrid inverter applies to the three-phase power grid with a voltage of 230/400V and a frequency of 50/60Hz.

④ Connect the inverter to the grid only after getting an approval from the local electric power company.

A three-phase AC breaker needs to be installed on the AC side of the UHC-4~20KT-U2. To ensure that the UHC-4~20KT-U2 can safely disconnect itself from the power grid when an exception occurs, select a proper overcurrent protection device in compliance with local power distribution regulations and Max. input (output) current of UHC-4~20KT-U2 AC side. The allowable AC cable of wire diameter and cross-sectional area for UHC-4~20KT-U2 are as shown in the following:

Determine whether an AC circuit breaker with greater overcurrent NOTICE capacity is required based on actual conditions.

Residual Current Monitoring Device

With an integrated universal current-sensitive residual current monitoring unit included, the inverter will disconnect immediately from the mains power once a fault current with a value exceeding the limit is detected.

However, if an external residual current device (RCD) is mandatory, the switch must be triggered at a residual current of 300 mA (recommended), or it can be set to other values according to local regulations. For example, in Australia, the inverter can use an additional 30mA (type A) RCD in installations.

5.2.2 Assembling the AC Connector

The AC terminal block is on the bottom side of the inverter.

① Take the AC connector out of the accessory bag and disassemble it.

Figure 5-5

2 According to the figure 5-4, select an appropriate cable, peel the insulation sleeve of AC cable off for 50mm, and peel off the end of 3L /PE / N wires for 8mm.

③ Insert the stripped end of the five wires into the appropriate hole of the terminal head. Please try to pull out the cable to make sure it is well connected.

Figura 5-7

The cord end terminals must be locked tightly, and make sure it won't be loose after a long period of use.

④ According to the arrow direction push the threaded sleeve to make it connected with the AC terminal head and then rotate the cable gland clock-wise to lock it.

Figura 5-8

5.2.3 Installing the AC Connector

High voltage may be present in inverter! Ensure all cables are voltage-free before electrical connection. Do not connect the AC circuit breaker until all inverter electrical connections are completed.

Connect the AC connector to the inverter AC terminal, and rotate the AC connector buckle clockwise until its tight enough.

Please distinguish the on-grid and back-up port, and don't mix up the on-grid port and back-up port when making the connection.

5.3 Monitoring Device Installation

UHC-4~20KT-U2 series hybrid inverter supports WIFI, LAN, and 4G communication.

Plug the WIFI, LAN, or 4G module into the WIFI/USB port in the bottom of inverter. A slight "click" sound during the installation represents that the assembly is in place.

Figure 5-10 Monitoring device installation

Refer to "WiFi-Plug Quick Installation Guide" In the accessory box for more information.

5.4 Meter and CT Connection

The current Transformer, also called CT, is usually installed on the L wires between the house loads and the power grid.

The Meter can be installed in the AC combiner box or other places that are unable to be touched by children. CT cable with length of 2m, it's fixed and can't be extended.

The CTs have been connected to the Smart Meter when you received them, and you just need to follow the wiring diagram in the Meter to connect CT.

CT installation direction should strictly follow the instruction in the user manual, otherwise, the inverter may not be working normally. The CT has to be corresponding with the port in the meter, and the connection between CT and Meter needs to be reliable, otherwise, the CT measurement accuracy may be affected.

NOTICE

No.	Definition	Function		
11+	L1-S1			
11-	L1-S2			
12+	L2-S1	To detect the CT surrent and direction		
12-	L2-S2			
13+	L3-S1			
13-	L3-S2			
L1	L1			
L2	L2	1.1/1.2/1.2/NL connect to grid to detect newer grid voltage		
L3	L3	LI/LZ/L3/N connect to grid to detect power grid voltage		
Ν	Ν			
А	DC 495			
В	R3400	Communicate with inverter		

Meter terminals definition as shown in table below:

5.5 Communication Connection

All communication ports are in the multifunction communication Port at the bottom of inverter which including BMS port, Meter port, DRMS port, PARL port, DCT port, EMS port.

Figure 5-12

RJ45	Definition	Function	
BMS1	CAN1	Communicate with BMS1	
BMS2	CAN2	Communicate with BMS2	
METER	RS 485	Communicate with Mete	
DRMS	PIN1~PIN5	DRMs For Australia and New Zealand	
PAR-A	SYN1~3,CAN,RS 485	Parallel connection of inverters, EMS	
PAR-B	SYN1~3,CAN,RS 485	Parallel connection of inverters, EMS	
DCT	DCT1/2~DCT3/4	Multifunction Relay	
COM	DI+, DI-, DI1+~DI4+	RCR and Fast stop	

5.5.1 Assembling the Multi-com Connector

① Unscrew the swivel nut from the connector. Remove the seal and lead the cable through the cable gland.

Figure 5-13

5.5.2 Connect the Meter and BMS Communication Cables

The communication between meter/BMS and inverter is RJ45 interface cable.

① Thread the RJ45 plug of appropriate length through the swivel nut, and insert it into the open side of the rubber gasket.

② Insert one side of the RJ45 plug into the RJ45 port of terminal block.

Figure 5-15

③ Insert another side of the communication cable into the meter RS485 port or BMS1/BMS2 CAN port.

5.5.3 Meter and BMS Communication

Before purchasing the battery, you need to make sure the battery you selected is in the battery approval list of Upower Electric, otherwise, the system may not work properly. Please contact your installer or Upower Electric service team for confirmation if you' re not sure about it.

BMS and Meter RJ45 terminal connection sequence and definition as below.

1 2 2 4 5 4 7 9	No.	Color	BMS1 side	BMS2 side	Meter side
	1	Orange & White	/	/	/
	2	Orange	/	/	/
	3	Green & White	/	/	RS485_B1
	4	Blue	CANH1	CANH2	/
	5	Blue & White	CANL1	CANL2	/
	6	Green	/	1	RS485_A1
	7	Brown & White	/	/	/
	8	Brown	/	1	/

Figure 5-16 RJ45 BMS&Meter RJ45 terminal connection sequence and definition

5.5.4 EMS Communication

An EMS communication cable needs to be connected when to control the operation of a hybrid inverter through the EMS, and communication between EMS and inverter is RS485.

5.5.5 DRMs

DRMs and Ripple Control support only one function at the same time DRMs

DRMs RJ45 terminal connection sequence and definition as below.

No.	Color	DRMs side
1	Orange & White	DRM1/5
2	Orange	DRM2/6
3	Green & White	DRM3/7
4	Blue	DRM4/8
5	Blue & White	REF D/0
6	Green	COM D/0
7	Brown & White	1
8	Brown	1

Figure 5-17 DRMs RJ45 terminal connection sequence and definition

DRMs (Demand Response Modes) interface is special reserved for Australia and New Zealand according to their safety regulation, and Ucanpower doesn't provide the DRMs device for the customer. The inverter supports the demand response modes as specified in the standard AS/NZS 4777. The inverter has integrated a terminal block for connecting to a DRMs.

DRMs wiring diagram (hybrid inverter) as below:

DRMs mode as shown in table below:

Mode	Function
DRM 0	Operate the disconnection device
DRM 1	Do not consume power
DRM 2	Do not consume at more than 50% of rated power
DRM 3	Do not consume at more than 75% of rated power and source reactive power if capable
DRM 4	Increase power consumption (subject to constraints from other active DRMs)
DRM 5	Do not generate power
DRM 6	Do not generate at more than 50% of rated power
DRM 7	Do not generate at more than 75% of rated power and sink reactive power if capable.
DRM 8	Increase power generation (subject to constraints from other active DRMs
Priority	DRM1 > DRM2 > DRM3 > DRM4
inonty	DRM5 > DRM6 > DRM7 > DRM8

5.5.6 RCR&Fast Stop

COM RJ45 terminal connection sequence and definition as below.

1 2 2 / 5 / 7 9	No.	Color	COM side
12345878	1	Orange &	1
	1	White	T
	2	Orange	/
	3	Green & White	DI1+
	4	Blue	DI2+
	5	Blue & White	DI3+
	6	Green	DI4+
	7	Brown & White	DI+
	8	Brown	DI-

Figure 5-19 COM RJ45 terminal connection sequence and definition

RCR (Ripple Control Receiver) interface is special reserved for Germany and some other European country according to their safety regulation, and Ucanpower doesn't provide the RCR device for the customer.

In Germany and some European areas, a ripple control receiver is used to convert a power grid dispatching signal to a dry contact signal. The dry contact is required for receiving the power grid dispatching signal. RCR wiring diagram (hybrid inverter) as below:

Ripple Control Figure 5-20 Receiver

RCR operation mode as shown in table below:

Switch mode (External RCR device)	Feed-in output power (in % of the Rated AC output power)
K1 turn on	100%
K2 turn on	60%
K3 turn on	30%
K4 turn on	0%
RCR priority: K4>K3>K2>K1	

UHC-4~20KT-U2 hybrid inverter comes standard with fast stop function, and you can use this function by connecting an external switch into the fast stop interface if it requires in the installation place. The external switch doesn't include in our accessory box.

Figure 5-21 Fast stop connection diagram

5.5.7 Multifunction Relay

DCT RJ45 terminal connection sequence and definition as below.

100/5470	No.	Color	DCT side
12345878	1	Orange &	
	1	White	DCT3
	2	Orange	
	3	Green & White	DOT
	4	Blue	DC14
	5	Blue & White	DCT1
	6	Green	DOTT
	7	Brown & White	DCT2
	8	Brown	DUIZ

The inverter is equipped with two multifunction dry contact relay, which helps turn the loads on or off when an extra contactor is connected, or startup the diesel generator when the diesel generator startup signal is connected.

Figure 5-23 Load control connection diagram

Figure 5-24 Generator Control connection diagram

5.5.8 Parallel System

	PAR RJ45 ter	minal connection	n sequence and	definition as	below.
--	--------------	------------------	----------------	---------------	--------

12345678	No.	Color	Par-A side	Par-B side	Function
	1	Orange & White	SYN1	SYN1	
	2	Orange	SYN2	SYN2	Synchronous
	3	Green & White	SYN3	SYN3	signal
	4	Blue	GND	GND	
	5	Blue & White	RS485_A2	RS485_A2	EMS
	6	Green	RS485_B2	RS485_B2	communication
	7	Brown & White	Par.CANH	Par.CANH	Parallel CAN
	8	Brown	Par.CANL	Par.CANL	communication

Figure 5-25 PAR RJ45 terminal connection sequence and definition

The connection mode of parallel machine is as follows:

Figure 5-26 The connection mode of parallel machine

 The first and last inverters need to dial the dial switch 1 to the ON position.
 It is recommended that the Back-up output wiring of all machines be confluent and connected to the LOAD by AC circuit breakers. It is not recommended that each machine be connected to the LOAD by AC circuit breakers alone.

 It is recommended that the ON-GRID output wiring of all machines be confluent and connected to the GRID by AC circuit breakers. It is not recommended that each machine be connected to the GRID by AC circuit breakers alone,
 The length of the cable from the LOAD end to the Back-up LOAD end of each

 Ine length of the cable from the LOAD end to the Back-up LOAD end of each machine should be the same as the length specification.
 When the LOAD power is greater than the maximum allowable Back-up LOAD

5. When the LOAD power is greater than the maximum allowable Back-up LOAD power of the parallel system, the LOAD can not be connected to the AC LOAD terminal, need access to the AC GRID side.

6. All machines in the parallel system must be in a consistent state.

7. The Master AC switch must be turned off for machine maintenance.

1. When using a parallel system, Please refer to the system setting of the inverter settings page in this manual.

2. For more installation and setup information about parallel system, please contact Upower Electric.

5.6 PV String Connection

PV Max. Input voltage is 960V without battery, or 850V with battery, otherwise inverter will be waiting

5.6.1 PV Side Requirements

System Layout of Units with external DC Switch

① Local standards or codes may require PV systems that fit with an external DC switch on the DC side. The DC switch must be able to safely disconnect the open-circuit voltage of the PV array plus a safety reserve of 20%. Install a DC switch to each PV string to isolate the DC side of the inverter.

⁽²⁾ The DC switch has to be certified by AS 60947.3:2018 and AS/NZS IEC 60947.1:2020 in Australia and New Zealand market. The Max. current of the DC switch matching with UHC- 4~20KT-U2 inverter is no less than 40A. We recommend the following electrical connection.

Figure 5-28

Select the appropriate photovoltaic cable

Cable requirements		Cable stripping length
Outside diameter	Conductor core section	
5.9-8.8 mm	4 mm²	7 mm

5.6.2 Assembling the PV Connector

Before assembling the DC connector, make sure that the cable polarity is correct.

① Peel off the DC cable insulation sleeve for 7 mm.

Figure 5-29

② Disassemble the connector in the accessory bag.

Figure 5-30

③ Insert the DC cable through the DC connector nut into the metal terminal and press the terminal with a professional crimping plier (pull back the cable with some power to check if the terminal is well connected to the cable).

Figure 5-31

④ Insert the positive and negative cables into the corresponding positive and negative connectors, pull back the DC cable to ensure that the terminal is tightly attached in the connector.

⑤ Use an open-end wrench to screw the nut to the end to ensure that the terminal is well sealed.

5.6.3 Installing the PV Connector

① Rotate the DC switch to "OFF" position.

Figure 5-33

② Check the cable connection of the PV string for polarity correctness and ensure that the open circuit voltage in any case does not exceed the inverter input limit of 1,000V.PV Max. Input voltage is 960V without battery, or 850V with battery, otherwise inverter will be waiting.

Figure 5-34

③ Insert the positive and negative connectors into the inverter DC input terminals respectively, a click sound should be heard if the terminals are well connected.

Figure 5-35

④ Seal the unused PV terminals with the terminal caps.

5.7 Power Cable of the Battery Connection

Please contact your battery supplier for detailed battery installation information.

5.7.1 The following principles must be considered when making battery connection:

① Disconnect the AC breaker on the grid side.

② Disconnect the breaker on the battery side.

③ Turn the inverter DC switch to the "OFF" position.

④ Make sure the maximum input voltage of battery is within the inverter limitation.

5.7.2 Lithium battery connector assembly procedures

Select an appropriate DC cable

Cable	e requirements	Cable stripping	Applicable
Outside diameter	Conductor core section	length	models
5.0-8.0 mm	6 mm²	8 mm	UHC-4~20KT-U2

If the conductor core of the battery cable is too small, which may cause poor contact between the terminal and the cable, please use the cable specified in the above table, or contact Upower Electric to purchase terminals of other specifications.

① Peel off the battery cable insulation sleeve for 10 mm.

② Disassemble the connector in the accessory bag.

Figure 5-37

③ Insert the battery cable through the battery connector nut into the metal terminal and press the terminal with a professional crimping plier (pull back the cable with some power to check if the terminal is well connected to the cable).

Figure 5-38

④ Insert the positive and negative cables into the corresponding positive and negative connectors, pull back the battery cable to ensure that the terminal is tightly attached in the connector.

(5) Use an open-end wrench to screw the nut to the end to ensure that the terminal is well sealed.

Figure 5-39

① Before making the battery connector, please make sure the polarity of the cable is correct.

② Use a multimeter to measure the voltage of the battery pack and make sure the voltage is within the inverter limitation and the polarity is correct.

(6) Insert the positive and negative connector into the inverter battery terminals respectively, and a "click" sound represents the assembly in place.

Figure 5-40

6 Commissioning

6.1 App Preparation

1 Install the Local configuration App and Cloud monitoring App with latest version.

② Register an account on the Cloud monitoring App. If you have got the account and password from the distributor/installer or Upower Electric, skip this step.

6.2 Inspection Before Commissioning

Check the following items before starting the inverter:

- ① All equipment has been reliably installed.
- ② DC switch and AC circuit breaker are in the "OFF" position.
- ③ The ground cable is properly and reliably connected.
- ④ The AC cable is properly and reliably connected.
- ⑤ The DC cable is properly and reliably connected.
- ⁽⁶⁾ The communication cable is properly and reliably connected.
- ⑦ The vacant terminals are sealed.

⑧ No foreign items, such as tools, are left on the top of the machine or in the junction box (if there is).

(9) The AC circuit breaker is selected in accordance with the requirements of this manual and local standards.

1 Marning signs & labels are intact and legible.

6.3 Commissioning Procedure

If all of the items mentioned above meet the requirements, proceed as follows to start up the inverter for the first time.

① Turn on the AC breaker.

② Turn on the lithium battery switch. Power on the battery pack manually if a battery is equipped.

③ Turn on the DC switch, the DC switch may be integrated in the inverter or installed by the customer.

④ The inverter will work properly after turning on the DC and AC breakers on the condition the weather and grid meet requirements. The time for entering the operating mode may vary according to the chosen safety code.
⑤ Observe the LED indicator to ensure that the inverter operates normally.

6 After the inverter is started, please refer to the [QUICK USE GUIDE]

which is attached to the access to configure the inverter.

CT AUTO TEST FUNCTION

UHC 4~20KT-U2 hybrid inverter has the function of detecting the installation direction and phase sequence of CT. The system is installed, this function can be enabled on the APP for detection.

SOC RESET FUNCTION

When the inverter is turned on for the first time, the battery will be automatically charged to calibrate the battery SOC. After the battery is charged, this function will be turned off automatically (If you confirm that it is not necessary, you can manually turn off the function. We recommend to enable this function.)

If you need to calibrate the SOC during system use, you can manually enable the function to calibrate the battery SOC on app or inverter screen. After the battery is fully charged, the function is automatically disabled again.

6.4 Stop the Inverter

When turning off the inverter, please follow the steps below:

① First set "System Maint" to "Power off" through the system setting of the inverter setting page on the display.

② Disconnect the breakers on the grid and load side.

③ Turn off the battery switch, and disconnect the DC breaker on the battery side (if any).

④ Wait 30 seconds and then turn the inverter DC switch to the "OFF" position. At this time, there is remaining power in the inverter capacitor. Wait for 10 minutes until the inverter is completely de-energized before operating.

⑤ Disconnect the AC and DC cables.

7 Operation

When the inverter is turned on, the following interfaces will be displayed on the LCD display, and the LCD display allows the user to check various operation information and to modify the settings of the inverter.

7.1 Local Interface Introduction

UHC-4~20KT-U2 has a touch screen on the front of inverter.

7.2 Home Page

This page shows the total PV input power, AC grid power, battery power and SOC, load power.

7.3 Detail Info Page

7.3.1 PV Info Page

This page shows the voltage, current and power of four different PV inputs.

		(\bigstar)						
PV1		PV2			PV3		PV4	
Volt	V	Volt	v	Volt		V	Volt	V
Current	А	Current	А	Curren	t	А	Current	А
Power	w	Power	W	Power		W	Power	w
								٢

7.3.2 Grid Info Page

This page shows the voltage, current, power and frequency of AC grid.

	Ż	ŧ				
Phase A			Phase B		Phase C	
Volt	V	Volt		V	Volt	V
Current	А	Current		А	Current	А
Power	W	Power		W	Power	W
Freq	ΗZ					
						٢

7.3.3 Load Info Page

This page shows the voltage, current and power of the loads. Backup A\B\C is the load information of the inverter Back-up port, Bypass A\B\C is the load information of the ON-GRID port.

	(\$	Ð				
Back-up A			Back-up B		Back-up C	:
Volt	V	Volt		V	Volt	V
Current	А	Current		А	Current	А
Power	w	Power		W	Power	W
Total Bypass Power						W
						5

7.3.4 Battery Info Page

This page shows the voltage, SOC, temperature, current, power and charging/discharging limit of the Bat1\2.

		(\bigstar)		G					
Battery1					Bat	ttery2			
Volt			V]	Volt			V	
Current			А]	Current			А	
Power			W]	Power			W	
SOC			%		SOC			%	
				_)

7.3.5 Inverter Info Page

This page shows the basic main settings of the inverter.

Work Mode: Economic	Inv Power Limit(%): 50.0	Zero Export: OFF
Reactive Mode: QP	Grid Std: EU-EN50438	BACK-UP: OFF
Batt Mode: Independant	Batt Type: DC-Source	On-Grid Unbal: OFF
PV Mode: PVI PV2 PV3 PV4	Paralle Addr: 1	Paralle En: OFF
		٢

7.4 Fault Page

This page shows the real-time fault alarm and fault history of the storage unit.

Real-time Alarm	\supset	History	
			5

7.5 Statistics Page

These two pages show statistics info of Grid, Battery, PV and Load.

	(KWH)	Day	Month	Year	Total
	Production				
	(KWH)	Day	Month	Year	Total
	Charge Discharge				
		Next)		ک
	(KWH)	Day	Month	Year	Total
X	Supply Reflux				
	(KWH)	Day	Month	Year	Total
	Consumed				
		Prev)		<u>ح</u>

7.6 Setting Page

7.6.1 Brightness Setting Page

This page shows the brightness setting and screen off time setting.

🗘 Brightness 🔀 Inverter	(j) Version 🚺 Clear
	ш Д
Trun off the screen :	Screen off time : S
	5

The value range is shown as below:

ltem	Description	Range
Brightness	the brightness of screen	Min - Max
Trun off the screen	make the screen to trun on/off	ON/OFF
Screen off time	the time to turn off the screen	5 – 500 s

7.6.2 Inverter Setting Page

This page needs a password. The default password is "12345" . Installer can change it in this menu.

$7 8 9 \leftarrow$	
1 2 3 OK	
0/+	

1) System Setting

This page shows the work mode setting: Match Load Mode, Economic Mode, Peak Valley Mode, Backup Mode, Generators Mode.

1.1) Math Load Mode: This mode is the default working mode, mainly used for self-use.

Q Brightness	🖾 Inverter	(i) Version	Clear	
Runing Setting Other Setting	Work Mode	Match Load	▼	
				5

1.2) Economic Mode: This mode is also called timing math load mode. Choose the timer ON to enter the setup screen, then you have six time periods to set work mode including Match Load, PV.Grid.Charge, PV.Only. Only choosing PV.Grid.Charge mode, you should set the Power percentage.

🖞 Brightness	🖾 Inverter	(j) Version	Clear	
Runing Setting	Work Mode	Economic		
Other Setting	Timer	OFF		
				٢

1.3) Peak Valley Mode: Choose the timer ON to enter the setup screen, then you have six time periods to set Charge or Discharge, including the working time and the Power percentage.

لَيْ Brightness	🖾 Inverter	(i) Version	Clear
Runing Setting	Work Mode	Peak Valley	▼
Other Setting	Timer	OFF	

Timer	Mode	Start Time	End Time	P (%)
No.1	OFF	00 : 00	00 : 00	0%
No.2	• OFF	00 : 00	00 : 00	0%
No.3	• OFF	00 : 00	00 : 00	0%

1.4) Backup Mode: The inverter will charge the battery to the cut-off point(Backup SOC) according to the set charge power percentage.

🖞 Brightness	🔀 Inverter	(j) Version	Clear
Runing Setting	Work Mode	Backup	▼
Other Setting	Charg Power	10% Backup	SOC 100%

1.5) Generators Mode: The inverter has two working modes to control the generator. One is to set the generator max Power value, the lowest efficiency point and highest efficiency point. The other one is to set the Gen Ctrl ON/OFF, start working SOC and stop working SOC.

🖞 Brightness	🖾 Inverter	(i) Version	Clear
Runing Setting	Work Mode	Generators	7
Other Setting	Max Power	0W High Efficiency	/ 50% ~ 70%
	Gen Ctrl C		
	Start SOC	20% Stop SOC	90%

2) Other Setting

This page shows the System Maint, Date setting and Time setting.

verter	(i) Version		
		Clear	
em Maint.	Power Off	7	
Date/Time			
			4
	em Maint.	em Maint. Power Off	em Maint. Power Off 🗨

7.6.3 Version Page

This page shows the version and serial number of the inverter.

لَثِ Brightness	🖾 Inverter	(i) Version	Clear	
	Model:			
	SN:			
	LCD:			
	CPU0:			
	CPU1:			
	CPU2:			
	Hardware:			٢

7.6.4 Clear Page

This page needs a password. The default password is "12345" . Installer can change it in the inverter setting.

This page shows the clear options of the storage.

🖾 Inverter	(j) Version	🔲 Clear	
Clear Energy	Clear Histor	ry	
			م
	Clear Energy	Clear Energy Clear Histor	Clear Energy Clear History

Item	Description	Default Setting	Range
Clear Energy	Clean generation	-	Cancel/OK
Clear History	Clear historical alarm records	-	Cancel/OK

• All the data can not be restored after the clearance!

7.7 Start up the System

The system shall be turned ON in the correct sequence as follows:

- 1) Connect the battery, PV ,AC power cables and communication cables.
- 2) Turn ON the BAT switch of the batteries, Then press power button of the batteries to turn on batteries.
- 3) Turn ON the PV switch at the left side of the inverter.
- 4) Turn on external AC switch, and select 'Power on' option on inverter screen or monitoring app to start inverter at the last.
- 5) If the system is running normal, please do commission configuration. If the system is not work normally, please re-check the wiring and setting until the system runs normal.
- 6) Set the details on the local screen.

7.8 Shut Down the System

System shall be turned OFF in the correct sequence as follows:

- 1) Select 'Power off' option on inverter screen or monitoring app to shut down inverter.
- 2) Turn off the external grid AC switch.
- 3) Turn off the PV switch at the left side of the inverter.
- 4) Press the POWER button of the battery.
- 5) Turn OFF the Battery switch of the batteries.

8 Troubleshooting

8.1 Error Message

UHC-4~20KT-U2 series hybrid inverter is designed in accordance with grid operation standards, and conform to the requirements of safety and EMC. The inverter had passed a series of rigorous tests to ensure it runs sustainably and reliably before shipment.

When a fault occurs, the corresponding error message will be shown on the LCD display, and in this case, the inverter might stop feeding into grid. The fault messages and their corresponding troubleshooting methods are listed below:

Codes	Content	Explanation	Solution
129	Arm DC Commu. ERR	ARM failed to communicate with DC	 Restart the inverter. Seek for help from the installer or manufacture.
130	Arm AC Commu. ERR	ARM failed to communicate with AC	1. Restart the inverter. 2.Seek for help from the installer or manufacture.
131	Arm EEprom ERR	EEPROM failure	 Restart the inverter. Seek for help from the installer or manufacture.
132	Arm Init SPI ERR	SPI initialization failure	1. Restart the inverter. 2.Seek for help from the installer or manufacture.
133	Arm RTC ERR	RTC failure	 Restart the inverter. Seek for help from the installer or manufacture.
134	Arm SPI Commu. ERR	SPI communication failure	1. Restart the inverter. 2.Seek for help from the installer or manufacture.
135	Arm Bat1 Commu. ERR	BAT1 communication failure	 Check whether the battery ID selection is correct. Check whether the communication connection between inverter and BMS is reliable Check the working status of battery.
136	Arm Bat2 Commu. ERR	BAT2 communication failure	 Check whether the battery ID selection is correct. Check whether the communication connection between inverter and BMS is reliable Check the working status of battery.
137	Arm Bat3 Commu. ERR	BAT3 communication failure	 Check whether the battery ID selection is correct. Check whether the communication connection between inverter and BMS is reliable Check the working status of battery.
138	Arm Bat4 Commu. ERR	BAT4 communication failure	Check whether the battery ID selection is correct. Check whether the communication connection between inverter and BMS is reliable 3. Check the working status of battery.
139	Bat Vol Above Set	The maximum charging voltage of the battery reaches the set value	1 . Check the setting value
140	Bat Vol Below Set	The minimum battery discharge voltage reaches the set value	1 . Check the setting value
141	Pv Offline Fault	PV off-grid fault	1.Turn off inverter and remove the back-up connector. Use a multimeter to measure whether there is voltage existing on the back-up connector. 2.Check whether the load power on back-up side exceeds the maximum output power of inverter.
161	Arm Fan1 Alarm	Fan 1 alarm	1. Check whether the fan is blocked by foreign matters, clean them if necessary.
162	Arm Fan2 Alarm	Fan 2 alarm	1. Check whether the fan is blocked by foreign matters, clean them if necessary.
163	Arm Fan3 Alarm	Fan 3 alarm	 Check whether the fan is blocked by foreign matters, clean them if necessary.
164	Arm Fan4 Alarm	Fan 4 alarm	1. Check whether the fan is blocked by foreign matters, clean them if necessary.
193	GridUVP	Power Grid undervoltage	 Check whether the safety code is correct. Check whether the AC cable wiring is correct. Extend the voltage protection limit with the permission of the Electricity Authority.
195	GridUFP	Power Grid underfrequency	 Check whether the AC cable is correct and well connected. Change to another country with wider protection range if it's allowed by the local electricity company.
196	GridOFP	Power Grid overfrequency	 Check whether the AC cable is correct and well connected. Change to another country with wider protec tion range if it's allowed by the local electricity company.

197	VLvrtlow	Low penetration failure	 Restart the inverter. Seek for help from the installer or manufacture.
200	HwBusUnb	Bus hardware imbalance	 Restart the inverter. Seek for help from the installer or manufacture.
201	InvOVP	Inverter over-voltage protection	 Check whether there is an impact load on the back-up side and whether the load power is too high. Check whether back-up side is short circuit.
202	DciOCP	DCI overcurrent protection	 Restart the inverter. Seek for help from the installer or manufacture.
203	DcvOVP	DCV overvoltage protection	 Restart the inverter. Seek for help from the installer or manufacture.
204	AcRmsOCP	AC current overcurrent	 Check whether there is an impact load on the back-up side and whether the load power is too high. Check whether back-up side is short circuit.
205	HwLoadOCP	Load hardware overcurrent	 Check whether there is an impact load on the back-up side and whether the load power is too high. Check whether back-up side is short circuit.
206	HwInvOCP	INV hardware overcurrent	 Check whether there is an impact load on the back-up side and whether the load power is too high. Check whether back-up side is short circuit.
207	HwADFaultDCV	DCV sampling failure	 Restart the inverter. Seek for help from the installer or manufacture.
208	HwADFaultIInv	INV current sampling hardware fault	 Restart the inverter. Seek for help from the installer or manufacture.
209	HwADFaultIGrid	Grid current sampling hardware fault	 Restart the inverter. Seek for help from the installer or manufacture.
210	HwADFaultDCI	DCI sampling hardware failure	 Restart the inverter. Seek for help from the installer or manufacture.
211	HwADFault_VGRID	Grid voltage sampling hardware fault	 Restart the inverter. Seek for help from the installer or manufacture.
212	HwADFault_GFCI	GFCI sampling failure	 Restart the inverter. Check whether the PV panels, cables, and connectors are waterlogged or damaged. Seek help from the installer or manufacture.
213	HwRChipFault	The slave port failed	 Restart the inverter. Seek for help from the installer or manufacture.
214	HwADFaultILoad	Load current sampling fault	 Restart the inverter. Seek for help from the installer or manufacture.
215	HwADFaultVLoad	Load voltage sampling fault	 Restart the inverter. Seek for help from the installer or manufacture.
216	HwADFaultVInv	INV voltage sampling fault	 Restart the inverter. Seek for help from the installer or manufacture.
217	GFCIFault	GFCI failure	 Restart the inverter. Check whether the PV panels, cables, and connectors are waterlogged or damaged. Seek help from the installer or manufacture.
218	GFCIDeviceFault	GFCI equipment failure	 Restart the inverter. Check whether the PV panels, cables, and connectors are waterlogged or damaged. Seek help from the installer or manufacture.
219	BusUVP	Bus undervoltage	1.Check whether the battery voltage or PV input voltage is normal
220	BusOVP	Bus overvoltage	 Check whether the input voltage exceeds the limit. Restart the inverter. Seek help from the installer or manufacture.
221	VbusUnbalance	Bus is unbalanced	 Restart the inverter. Seek for help from the installer or manufacture.
222	BusUpFail	Bus Boost Fault	1. Restart the inverter. 2. Seek for help from the installer or manufacture.
223	SwOCPInstant	Over-current of inverter software	 Restart the inverter. Seek for help from the installer or manufacture.

224	HwSpdHappen	Hardware Lightning protection failure	 Restart the inverter. Seek for help from the installer or manufacture.
225	PvOVP	PV overvoltage	1.Reduce the number of PV panels to make sure that the open-circuit voltage of each string is lower than the inverter maximum allowed input voltage.
226	IpvUnbalance	PV current uneven current	 Check that the PV is fully connected. Restart the inverter. Seek help from the installer or manufacture.
227	BatOVP	Bat overvoltage	 Check working status of battery. Check if battery is alarming.
228	IbatUnbalance	The current of the battery is uneven	1.Check that the BAT is fully connected. 2. Restart the inverter. 3. Seek help from the installer or manufacture.
229	PVUVP	PV undervoltage	1.Reduce the number of PV panels to make sure that the open-circuit voltage of each string is lower than the inverter maximum allowed input voltage.
230	BatUVP	Bat undervoltage	 Check working status of battery. Check if battery is alarming.
231	PVInModeSetFault	Error setting PV input mode	 Check that the PV input mode is set correctly. Seek help from the installer or manufacture.
232	BATInModeSetFault	Error setting BAT input mode	1.Check that the BAT input mode is set correctly. 2. Seek help from the installer or manufacture.
233	HwPv1Ocp	PV1 hardware overcurrent	 Restart the inverter. Seek help from the installer or manufacture.
234	HwPv2Ocp	PV2 hardware overcurrent	 Restart the inverter. Seek help from the installer or manufacture.
235	HwBat1Ocp	BAT1 hardware overcurrent	 Restart the inverter. Seek help from the installer or manufacture.
236	HwBat2Ocp	BAT2 hardware overcurrent	 Restart the inverter. Seek help from the installer or manufacture.
237	HwBusOcp	BUS hardware overcurrent	 Restart the inverter. Seek help from the installer or manufacture.
238	HwBusOvp	BUS hardware overvoltage	 Restart the inverter. Seek help from the installer or manufacture.
239	HwDcOcp	DC hardware overcurrent	 Restart the inverter. Seek help from the installer or manufacture.
240	HwAcOcp	AC hardware overcurrent	 Restart the inverter. Seek help from the installer or manufacture.
241	CnsistntFau_VGrid	Grid Voltage consistency failure	 Restart the inverter. Seek help from the installer or manufacture.
242	ConsistentFault_FGri d	Grid Frequency consistency failure	1. Restart the inverter. 2. Seek help from the installer or manufacture.
243	ConsistentFault_DCI	DCI conformance failure	 Restart the inverter. Seek for help from the installer or manufacture.
244	CnsistntFault_GfCl	GFCI conformance failure	 Restart the inverter. Seek for help from the installer or manufacture.
245	SpiCommLose	SPI failure	1. Restart the inverter. 2.Seek for help from the installer or manufacture.
246	SciCommLose	SCI failure	1. Restart the inverter. 2.Seek for help from the installer or manufacture.
247	RecoverRelayFail	Recoverable relay failure	 Use multimeter to measure the voltage between N&PE cable on AC side. If the voltage is higher than 10V, which means the neutral or ground connection is abnormal. restart the inverter. Seek help from the installer or manufacture.
248	PvlsoFault	ISO failure	 Check whether PV panels, cables, and connectors are waterlogged or damaged. Seek help from the installer or manufacture.

249	OTAmb	Ambient Over-temperature	 Check whether the inverter installation location is well ventilated. Try to turn it off for a while, and then power it back on when it cools down. Seek help from the installer or manufacture.
250	OTInv	INV Over-temperature	 Check whether the inverter installation location is well ventilated. Try to turn it off for a while, and then power it back on when it cools down. Seek help from the installer or manufacture.
251	OTBoost	PV Over-temperature	 Check whether the inverter installation location is well ventilated. Try to turn it off for a while, and then power it back on when it cools down. Seek help from the installer or manufacture.
252	OTBid	Bat Over-temperature	1.Check whether the inverter installation location is well ventilated. 2.Try to turn it off for a while, and then power it back on when it cools down. 3.Seek help from the installer or manufacture.
253	BatSSFault	Bat soft-start relay failure	1. Restart the inverter. 2. Seek for help from the installer or manufacture.
257	unrecoverBusOVP	Bus overvoltage permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
258	unrecoverVbusUnbal ance	Bus voltage unbalance permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
259	unrecoverlpvUnbalan ce	PV current unbalance permanent fault in parallel	 Restart the inverter. Seek for help from the installer or manufacture.
260	unrecoverlbatUnbala nce	BAT current unbalance permanent fault in parallel	 Restart the inverter. Seek for help from the installer or manufacture.
261	unrecoverOCPInstant	INV overcurrent permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
262	unrecoverBusSoftOC P	Bus software overcurrent permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
263	unrecoverPvSoftOCP	PV software overcurrent permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
264	unrecoverBatSoftOC P	BAT software overcurrent permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
267	unrecoverEEPROM_R	IIC reading permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
268	unrecoverEEPROM_ W	IIC write permanent fault	1. Restart the inverter. 2. Seek for help from the installer or manufacture.
269	unrcvryRelayFault	AC relay permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.
270	unrcvryPhaseSequen ceFault	AC phase permanent fault	 Restart the inverter. Seek for help from the installer or manufacture.

8.2 Inverter Maintenance

DANGER	 Incorrect operation do cause the risk of inverter damage or personal injury. Please strictly follow the steps below. ① select 'Power off' option on inverter screen or monitoring app to shut down inverter. ② Turn off the AC breaker on utility grid side. ③ Turn off the AC breaker on utility grid side. ③ Turn off the battery switch. ④ Turn off the battery switch, and disconnect the DC breaker on the battery side (if any). ⑤ Wait for 10 minutes to ensure the energy of capacitor is fully dissipated. ⑥ Confirm all the indicator lights are off.
	Keen unprofessional person away

Keep unprotessional person away.

A temporary alarm sign or barrier must be posted to keep unprofessional person away while performing electrical connection and maintenance.

Any Arbitrary replacement of internal components is forbidden. Please seek help from Upower Electric for maintenance support. Otherwise, we will not take any responsibility.

Items	Methods	Period
System clean	Check dust or foreign matter on the heat-sink, air inlet and outlet.	Once 6-12 months
Electrical connection	Check whether the cables are in good connection.	Once 6-12 months
Sealing	Check whether all the terminals and ports are properly sealed. Reseal the cable hole if it is aging or not sealed.	Once a year

8.3 Battery Maintenance

Installation and maintenance of batteries should be performed or supervised with professional knowledge about batteries.

Please contact your battery supplier for detailed installation and maintenance information.

9 Appendix

9.1 Technical Parameters

Model	UHC-4KT-U2	UHC-5KT-U2	UHC-6KT-U2	UHC-8KT-U2	
PV Input		ı			
Start-up voltage (V)	135	135	135	135	
Max. DC input voltage (V)*	1000*	1000*	1000*	1000*	
Rated DC input voltage (V)	600	600	600	600	
MPP1 voltage range (V)*	120-960*	120-960*	120-960*	120-960*	
No. of MPP trackers	2	2	2	4	
No. of DC inputs per MPP1	18/18	1/1	1/1	1/1/1/1	
Max. short-circuit current (A)	25/25	25/25	25/25	25/25/25/25	
Battery Side	20/20	20/20	20/20	20/20/20/20	
Battery type	Lithium Battery	y (with BMS)	Lithium Batte	ry (with BMS)	
Battery communication mode	CAN	CAN	CAN	CAN	
Battery voltage range (V)	135-750	135-750	135-750	135-750	
No. of battery input	1	1	1	2	
Maximum charging current (A)	25	25	25	25/25	
Maximum discharge current (A)	25	25	25	25/25	
Grid Side	4.0	5.0	<u> </u>	0.0	
Max, output power (kW)	4.0	5.0	6.0	8.0	
Rated output apparent power (kVA)	4.4	5.0	6.0	0.0	
Max. output apparent power (kVA)	4.0	5.5	6.6	8.8	
Max, input apparent power (kVA)	8.0	10.0	12.0	16.0	
Max. charging power of battery (kW)	4.0	5.0	6.0	8.0	
Rated AC voltage (V)	3L/N/PE, 220/3	80V; 230/400V	3L/N/PE, 220/3	380V; 230/400V	
Rated AC frequency (Hz)	50/60	50/60	50/60	50/60	
Rated output current (A)	6.0	7.6	9.1	12.1	
Max. output current (A)	6.6	8.3	10.0	13.3	
Max. input current (A)	12.1	15.2	18.2	24.2	
Power factor	0.8 leading .	0.8 lagging	0.8 leading	0.8 lagging	
Max. total harmonic distortion	<3% @Rated	output power	<3% @Rated	output power	
Back un Sido	<0.5%IN	<0.5%IN	<0.5%IN	<0.5%IN	
Rated output power (kW)	4.0	5.0	6.0	8.0	
Max. output power (kW)	4.0	5.5	6.6	8.8	
Rated output apparent power (kVA)	4.0	5.0	6.0	8.0	
Max. output apparent power (kVA)	4.4	5.5	6.6	8.8	
Rated output current (A)	6.0	7.6	9.1	12.1	
Max. output current (A)	6.6	8.3	10.0	13.3	
UPS switching time	<10ms	<10ms	<10ms	<10ms	
Rated output voltage (V)	3/N/PE, 220/38	30V; 230/400V	3/N/PE, 220/3	380V; 230/400V	
Rated output frequency (HZ)	50/60	50/60	50/60	50/60	
Voltage harmonic distortion	8, 6US	10, 60s	12, 60\$	16, 60s	
Efficiency	<3% @LI	illeal load	<3% @LI	near Ioau	
Max efficiency	98.1%	98.1%	98.1%	98.2%	
European efficiency	97.3%	97.3%	97.3%	97.4%	
Protection	· ·				
DC reverse polarity protection	Integr	rated	Integ	rated	
Battery input reverse connection	Integr	rated	Integ	rated	
protection					
Insulation resistance protection	Integr	rated	Integ	rated	
Surge protection	Integr	rated	Integ	rated	
Over-temperature protection	Integr	rated	Integ	rated	
Residual current protection	Integrated (Er	rated	Integ	rated	
AC over-voltage protection	Integrated (Fit	rated	Integrated (FI	rated	
Overload protection	Integ	rated	Integ	rated	
AC short-circuit protection	Integr	rated	Integ	rated	
General Data	5		5		
Over voltage category	PV: Ⅱ ;	Main: III	PV: Ⅱ ;	Main: III	
Dimensions (mm)		500*450*180(W*H*D)		570*450*200(W*H*D)	
Weight (KG)	25	25	25	34	
Protection degree	IP65	IP65	IP65	IP65	
Standby self-consumption (W)	<15	<15	<15	<15	
Operating Temperature Range (°C)	00.00	I ransform	ieriess	00.00	
Relative Humidity (%)	-30~60	-30~60	-30~60	-30~60	
Operating Altitude (m)	0~100	3000 (\3000	u~ 100 m derating)	0~100	
Cooling		Natural Co	nvection		
Noise Level (dB)	<25	<25	<25	<25	
Display		LC	D		
Communication		CAN, RS485, WiF	i/LAN (Optional)		
Model	UHC-10KT-U2	UHC-12KT-U2	UHC-15KT-U2	UHC-20KT-U2	
-------------------------------------	---------------------------------	------------------------------	------------------------------	---------------	--
PV Input					
Start-up voltage (V)	135	135	135	135	
Max. DC input voltage (V)*	1000*	1000*	1000*	1000*	
Rated DC input voltage (V)	600	600	600	600	
MPP1 Voltage range (V)*	120-960*	120-960*	120-960*	120-960*	
No. of MCP trackers	4	4	4	4	
Max_input current (A)	18/18/18/18	18/18/18/18	18/18/18/18	18/18/18/18	
Max. short-circuit current (A)	25/25/25/25	25/25/25/25	25/25/25/25	25/25/25/25	
Battery Side					
Battery type	Lithium Bat	tery (with BMS)	Lithium Batte	ry (with BMS)	
Battery communication mode	CAN	CAN	CAN	CAN	
Battery voltage range (V)	135-750	135-750	135-750	135-750	
No. of battery input	2	2	2	2	
Maximum charging current (A)	25/25	25/25	25/25	25/25	
Maximum discharge current (A)	25/25	25/25	25/25	25/25	
Bated output power (kW)	10.0	12.0	15.0	20.0	
Max_output power (kW)	11.0 0	13.2	16.5 @	20.0	
Rated output apparent power (kVA)	10.0	12.0	15.0	20.0	
Max. output apparent power (kVA)	11.0 1	13.2	16.5 ®	22.0	
Max. input apparent power (kVA)	20	24	30.0	30.0	
Max. charging power of battery (kW)	10.0	12.0	15.0	20.0	
Rated AC voltage (V)	3L/N/PE, 220/380V; 230/400V		3L/N/PE, 220/3	80V; 230/400V	
Rated AC frequency (Hz)	50/60	50/60	50/60	50/60	
Rated output current (A)	15.1	18.2	22.7	30.3	
Max. output current (A)	16.7 3	20.0	25.0 ®	33.3	
Max. input current (A)	30.3	36.4	45.5	45.5	
Power factor	0.8 leading	U.8 lagging	U.8 leadingU.8 lagging		
DCI	<0.5%lp	<0.5%Ip	<0.5%lp	<0.5%lp	
Back-up Side	<0.070m	<0.570III	<0.570m	<0.570III	
Rated output power (kW)	10.0	12.0	15.0	20.0	
Max. output power (kW)	11.0	13.2	16.5	22.0	
Rated output apparent power (kVA)	10.0	12.0	15.0	20.0	
Max. output apparent power (kVA)	11.0	13.2	16.5	22.0	
Rated output current (A)	15.1	18.2	22.7	30.3	
Max. output current (A)	16.7	20.0	25.0	33.3	
UPS switching time	<10ms	<10ms	<10ms	<10ms	
Rated output voltage (V)	3/N/PE, 220/3	380V; 230/400V	3L/N/PE, 220/3	80V; 230/400V	
Rated output irequency (H2)	20,602	20,600	50/60	25,600	
Voltage barmonic distortion	20,003	20,003	23,003	inear load	
Efficiency					
Max. efficiency	98.2%	98.2%	98.4%	98.4%	
European efficiency	97.4%	97.4%	97.5%	97.5%	
Protection					
DC reverse polarity protection	Integrated Integrated				
Battery input reverse connection	Integrated		Integrated		
protection					
Insulation resistance protection	Integrated		Integrated		
Surge protection	Integrated		Integrated		
Residual current protection	Integrated		Integrated		
Islanding protection	Integrated (Frequency shift)		Integrated (Frequency shift)		
AC over-voltage protection	Integrated		Integrated		
Overload protection	Integrated		Integrated		
AC short-circuit protection	Integrated		Integrated		
General Data					
Over voltage category	PV: II	; Main: III	PV: Ⅱ ;	Main: III	
Dimensions (mm)	570*450*2	200(W*H*D)	570*450*2	00(W*H*D)	
Weight (KG)	34	34	38	38	
Protection degree	IP65	IP65	IP65	IP65	
Topology	<15	<15	<15	<15	
Operating Temperature Pange (°C)	3060	I ransto	30-60	30-60	
Relative Humidity (%)	0~100	0~100	0~100	0~100	
Operating Altitude (m)	0 100	3000 (>300	Om derating)	0 100	
Cooling	Natural	Natural Convection Smart Fan			
Noise Level (dB)	<25	<25	<25	<25	
Display		L	LCD		
Communication	CAN, RS485, WiFi/LAN (Optional)				

9.2 Contact Information

Should you have any question about this product, please contact us. We need the following information to provide you the best assistance:

- Model of the device
- Serial number of the device
- Date of the device
- Fault code/name
- Brief description of the problem

Upower Electric Co., Ltd

Address: 4th Floor, Building A, Huafeng Zhigu-Yuanshan Science and Technology Park, No. 72 Yinhe Road, Longgang District, Shenzhen, CHINA UCANPOWER GmbH

Address: Hinter dem Turme 15,38114, Braunschweig, Germany

Website: www.ucanpower.com Service Mail: info@ucanpower.com

UPOWER ELECTRIC CO.,LTD

Add: 4F-A Block,No.62,Yinhe Road,Longgang District, Shenzhen,Guangdong,China Email: info@ucanpower.com

Web: www.ucanpower.com